Previously, I considered the tricky problem of Does the doped Hubbard model superconductor?
I mentioned in passing a worrying quantum Monte Carlo study published in PRB in 1999
Correlated wave functions and the absence of long-range order in numerical studies of the Hubbard model
M. Guerrero, G. Ortiz, and J. E. Gubernatis
The graph below shows the distance dependence of the pairing correlation function in the d-wave channel. If superconductivity occurs it should lend to a non-zero value equal to the square of the superconducting order parameter.
It certainly looks like it tends to zero at large distances.
However, careful examination shows that it seems to have a non-zero value of order 0.001.
Perhaps, that is just a finite size effect.
But, we should ask, "How big do we expect the long-range correlations, i.e. the magnitude of the square of the order parameter d, to be?"
A cluster DMFT calculation on the doped Hubbard model (in the PRB below) gives a value of order 0.03 for the order parameter d. This means d^2 ~ 0.001 consistent with the QMC study which claims no superconductivity!
Anomalous superconductivity and its competition with antiferromagnetism in doped Mott insulators
S. S. Kancharla, B. Kyung, D. Sénéchal, M. Civelli, M. Capone, G. Kotliar, and A.-M. S. Tremblay
Similar issues arise when assessing the results of
Absence of Superconductivity in the Half-Filled Band Hubbard Model on the Anisotropic Triangular Lattice
R. T. Clay, H. Li, and S. Mazumdar
If I take the order parameter estimated by a RVB calculation reported in this PRL (by Ben Powell and myself) and square its value it predicts a long-range pairing correlation (~0.001) comparable to the extremely small values found in the numerical study claiming absence of superconductivity.
Clay, Li, and Mazumdar also mentioned the problematic observation that the pairing correlation they calculated did not increase with the Hubbard U. However, my previous post discussed how Scalapino and collaborators argued this is because one needs to factor in the quasi-particle renormalisation Z that also occurs with increasing U. For the half-filled Hubbard model this probably leads to an order of magnitude enhancement of the pairing as U increases towards the Mott insulating phase, since Z decreases from 1 to 0.3 and the renormalised P_d scales with 1/Z^2.
So, I remain to be convinced that superconductivity does not occur in the Hubbard model, both upon doping the Mott insulator or at half-filling near the band-width controlled Mott transition.
Subscribe to:
Post Comments (Atom)
A very effective Hamiltonian in nuclear physics
Atomic nuclei are complex quantum many-body systems. Effective theories have helped provide a better understanding of them. The best-known a...
-
Is it something to do with breakdown of the Born-Oppenheimer approximation? In molecular spectroscopy you occasionally hear this term thro...
-
If you look on the arXiv and in Nature journals there is a continuing stream of people claiming to observe superconductivity in some new mat...
-
I welcome discussion on this point. I don't think it is as sensitive or as important a topic as the author order on papers. With rega...
No comments:
Post a Comment