Largely due to the work of Sriram Shastry I have recently become aware that particle-hole asymmetry in strongly correlated electron systems is an important issue (and challenge).
This was flagged in an earlier post.
There are a number of experimental anomalies that suggest the asymmetry is much larger than that associated with band structure effects. These include:
-highly asymmetric ARPES line shapes in the cuprates
-the slope of the I-V characteristics for some STM spectra
-a thermoelectric power that is large and changes sign with temperature in some cuprates
Theoretically it has been a puzzle that theoretical calculations for doped Mott insulators often give self energies that have a large particle-hole asymmetry. See for example Figure 3 in this PRL, Figure 13 of this PRB, and the figure below. It is very different from the perfect particle-hole symmetry implicit in Fermi liquid theory and marginal Fermi liquid theory. Also the quadratic frequency dependence only appears over a narrow frequency range, leading to kinks in the quasi-particle dispersions.
There is a new preprint
Extremely Correlated Fermi Liquid study of the U=infinity Anderson Impurity Model
by Sriram Shastry, Edward Perepelitsky, and Alex Hewson
The frequency dependence of the self energy for a range of impurity occupations n is shown below.
The authors show how this asymmetry emerges naturally in terms of Shastry's theory of an Extremely Correlated Fermi liquid that has two Fermi liquid type "self energies", elucidated in this PRB and particularly in this talk. In particular, there is an emergent low-energy scale Delta associated with the asymmetry.
I thank Sriram and Edward for helpful discussions about their work.
Showing posts with label particle-hole asymmetry. Show all posts
Showing posts with label particle-hole asymmetry. Show all posts
Subscribe to:
Posts (Atom)
Multi-step spin-state transitions in organometallics and frustrated antiferromagnetic Ising models
In previous posts, I discussed how "spin-crossover" material is a misnomer because many of these materials do not undergo crossov...

-
Is it something to do with breakdown of the Born-Oppenheimer approximation? In molecular spectroscopy you occasionally hear this term thro...
-
Nitrogen fluoride (NF) seems like a very simple molecule and you would think it would very well understood, particularly as it is small enou...
-
I welcome discussion on this point. I don't think it is as sensitive or as important a topic as the author order on papers. With rega...