Electronic correlations in Hund metals
L. Fanfarillo and E. Bascones
A couple of key ideas.
In a single band Hubbard model as one approaches the Mott insulator the probability of double occupancy decreases and so does the local charge fluctuations. This reduces the quasi-particle weight Z, which is the overlap of the ground state with a non-interacting Fermi sea.
A Hund's metal is different.
Hund's coupling polarizes the spin locally. The small
Here
The three curves (black, green, red) correspond to 5 electrons in 6 orbitals, 3 electrons in 4 orbitals, and 2 electrons in 3 orbitals, respectively.
Unlike in a single band, as the system becomes more correlated (with increasing Hund's coupling J_H) the charge fluctuations can increase, as shown below.
It would be interesting to see how much of this essential physics is captured in a two-site Hubbard-Kanomori model such as this one.
An important open question is whether the signatures of a bad metal (such as thermopower of order k_B/e, no Drude peak, .... are the same for a Hund's metal and a single band system.