Tuesday, March 27, 2012

Quantum chemical justification for an empirical correlation

A challenge to quantum chemistry is to describe many of the empirical correlations that experimentalists have painstakingly catalogued. For example, an earlier post discusses a correlation between the rate of a photoisomerisation reaction and the electron withdrawing ability of a substitutent. An important empirical rule for organic dye molecules is the Dewar-Knott rule which relates the frequency (wavelength) of maximum light absorption [the colour of the dye] to the electron withdrawing (or donating) ability of a substituent.

Seth Olsen recently published a nice paper which gives a high level quantum chemistry justification of the Dewar-Knott rule for a family of diarylmethane dyes, including Michler's hydrol blue. The graph below shows how the excitation energy varies with a parameter characterising the composition of the ground state many-body wavefunction, and which varies with the substituent X.

No comments:

Post a Comment

Emergence and protein folding

Proteins are a distinct state of matter. Globular proteins are tightly packed with a density comparable to a crystal but without the spatia...