Hund's rule coupling in multi-band metals

There is a really nice preprint, Janus-faced influence of the Hund’s rule coupling in strongly correlated materials, by Luca de’ Medici, Jernej Mravlje, and Antoine Georges.

The figure below is a helpful summary of the main results. The colour shading shows the quasi-particle weight Z in the metallic phase as a function of U/D and band filling for a system with 3 degenerate bands for a fixed value of J=0.15U. [The relevant multi-band Hubbard model is solved at the level of Dynamical Mean-Field Theory (DMFT)]. The cases n=2 and 4 are particularly interesting because there is a large range of U/D for which one has a metallic phase with small Z. The authors characterise this as a bad metal (i.e. which occurs above some relatively low coherence temperature T*).
One minor comment. The authors mention just a few signatures of bad metals [large resistivity above the Mott-Ioffe-Regel limit and large poorly screened local moment]. Others include no Drude peak in the optical conductivity, and a large thermopower ~k_B/e [see this earlier post].

So what is this about Janus faced? I had no idea. But I found out that Janus was a Roman God of transitions. He looked to the past and future and was often depicted in statues as "two-faced". The point here is that Hund's rule can either enhance or reduce the correlations, depending on the filling.

I thank Jaime Merino for bringing the paper to my attention and for some helpful discussions about it.

Comments

Popular posts from this blog

Is it an Unidentified Superconducting Object (USO)?

What is Herzberg-Teller coupling?

What should be the order of authors on a conference poster or talk?