Jure Kokalj, Nigel Hussey, and I have just completed a paper, Transport properties of the metallic state of overdoped cuprate superconductors from an anisotropic marginal Fermi liquid model.
We show how a relatively simple model self-energy [considered earlier in this PRL] gives a nice quantitative description of a wide range of experimental results on Tl2201 including intra-layer resistivity, frequency-dependent conductivity, and the Hall resistance. No new parameters are introduced beyond those needed to describe angle-dependent magnetoresistance experiments from Nigel's group.
One thing I found striking was just how sensitive the Hall conductivity is to anisotropies in the Fermi surface and the scattering rate [a point emphasized by Ong with his beautiful geometric interpretation].
We also show that our model self-energy successfully describes both the resistivity (with a significant linear in temperature T dependence) and the Hall angle ( ~T^2) without invoking exotic new theories.
A key outstanding challenge is to connect our model self-energy [which is valid in the overdoped region] to possible forms for the underdoped region where the pseudogap occurs.
We welcome comments.
Subscribe to:
Post Comments (Atom)
Rodney Baxter (1940-2025): Mathematical Physicist
I recently learnt that Rodney Baxter died earlier this year. He was adept at finding exact solutions to two-dimensional lattice models in st...
-
Is it something to do with breakdown of the Born-Oppenheimer approximation? In molecular spectroscopy you occasionally hear this term thro...
-
This week Nobel Prizes will be announced. I have not done predictions since 2020 . This is a fun exercise. It is also good to reflect on w...
-
Nitrogen fluoride (NF) seems like a very simple molecule and you would think it would very well understood, particularly as it is small enou...

A key outstanding challenge is to connect our model self-energy [which is valid in the overdoped region] to possible forms for the underdoped region where the pseudogap occurs.
ReplyDeleteGood luck with that.