Thursday, June 4, 2009

Organic charge transfer salts reveal a new universality class: the Mott metal-insulator transition

As mentioned in a previous post organic charge transfer salts have revealed rich new physics associated with strong electronic correlations. The family kappa-(BEDT-TTF)2X has the phase diagram below as a function of temperature and pressure. There is a first-order phase transition between a Mott insulator and a metal (which becomes superconducting below about 12 K. The first-order transition line ends a critical point at about 40 K.

In 2005, Kagawa, Kawamoto, and Kanoda published a beautiful paper in Nature which did a scaling analysis of the conductivity near the critical point. From the figure below they could the extract critical exponents show (delta,beta,gamma)=(2,1,1). These values did not
correspond to any known universality class. This is in distinct contrast to the critical exponents found for the corresponding metal-insulator transition for vanadium sesquioxide (V2O3) doped with chromium. In that case the exponents were those for the three dimensional Ising transition (liquid-gas transition).


Subsequently, Imada investigated theoretically how this universality class could emerge due to a marginal quantum critical region near a Mott transition. Misawa and Imada found how this class corresponded to the marginal point between the Ising transition and the topological transition of the Fermi surface.
I remember someone telling me there were problems with this theory
and so hopefully someone can write a comment about that.

So another example how the organic charge transfer salts are a
playground for emergent phenomena arising from quantum many-body physics.

No comments:

Post a Comment

Science job openings in sunny Brisbane, Australia

Bribie Island, just north of Brisbane. The University of Queensland has just advertised several jobs that may be of interest to readers of t...