Here is a rough summary of a few things I think I learnt this week. More to come later...
Please post corrections and clarifications.
A lot of attention in both STM and ARPES studies on the cuprates is being given to questions of particle-hole symmetry. This is because in a superconducting d-wave gap, the Bogoliubov quasi-particles have perfect particle-hole symmetry. In contrast, other possible nodal states such as the staggered flux phase (d-density wave, DDW) do not have this property.
The evidence from both STM and ARPES is that the physical origin of the gap near the nodes is quite different from the gap at the anti-nodes. They have different temperature and doping dependence. The consensus also seems to be that the gap near the nodes is from fluctuating superconductivity.
Some of the issues are nicely summarised in a Science Perspective by Andy Millis.
Electronic Raman Scattering (ERS) is a sensitive probe of the d-wave gap and pseudogap. The B1g polarisation ERS is dominated by quasi-particles near the anti-nodal part of the Brillouin zone. In contrast, the B2g polarisation response is dominated by the nodal part.
In the cuprates Tc tends to increase (decrease) with pressure in the underdoped (overdoped) region. Is this simply because pressure decreases correlations and so increasing pressure is equivalent to a small increase in doping?
Subscribe to:
Post Comments (Atom)
Emergence and protein folding
Proteins are a distinct state of matter. Globular proteins are tightly packed with a density comparable to a crystal but without the spatia...
-
Is it something to do with breakdown of the Born-Oppenheimer approximation? In molecular spectroscopy you occasionally hear this term thro...
-
If you look on the arXiv and in Nature journals there is a continuing stream of people claiming to observe superconductivity in some new mat...
-
I welcome discussion on this point. I don't think it is as sensitive or as important a topic as the author order on papers. With rega...
No comments:
Post a Comment