Friday, February 15, 2013

Quantum nuclear motion in proton sponges

There is a nice paper Hydrogen Motion in Proton Sponge Cations: A Theoretical Study
by Yevhen Horbatenko and Sergei Vyboishchikov

Proton sponge is a trade name for a particular compound which is a strong base, i.e. it likes to bond to protons.

The proton sponge compounds are of particular interest to me because they work by the proton forming a strong hydrogen bond between two nitrogen atoms.
In this paper the authors first use quantum chemistry to calculate the adiabatic potential energy surface for the ground state as a function of the proton position. They then calculate the proton vibrational wavefunction and energy.
The three potential energy curves above correspond to the three distinct cases of hydrogen bonding: i) strong hydrogen bond, ii) low barrier hydrogen bond, iii) weak hydrogen bond. [They arise naturally in my simple model of H-bonds.]

I found two results of the authors particularly interesting.

First, the shape of the potential energy curve [and specifically the presence or absence of a barrier] depends on the level of quantum chemistry or density functional used in the calculation.

Second, the paper has a nice physical insight for strong hydrogen bonds that I have not seen before. The vibrational energy levels have spacing similar to that for a square well potential of with width comparable to the donor-acceptor distance. Specifically, the energy of the n-th level is proportional to n^2, whereas for a harmonic potential it is proportional to (n-1). This reflects how anharmonic the potential is.

No comments:

Post a Comment

Why is the state of universities such an emotional issue for me?

It all about values! Universities have changed dramatically over the course of my lifetime. Australian universities are receiving increasing...