At the Journal Club for Condensed Matter there is a very nice and clear commentary Identifying a spin liquid on Kagome lattice by quantum entanglement by Ashvin Vishwanath. I learnt a lot from reading it.
It reviews two recent preprints which use numerical methods (density matrix renormalisation group = DMRG) to establish topological order in the ground state of the Heisenberg spin-1/2 model on the Kagome lattice.
An earlier post considered earlier DMRG evidence that was suggestive of a spin liquid, with an energy gap, but did not establish topological order.
Subscribe to:
Post Comments (Atom)
Superconductivity: a poster child for emergence
Superconductivity beautifully illustrates the characteristics of emergent properties. Novelty. Distinct properties of the superconducting s...

-
Is it something to do with breakdown of the Born-Oppenheimer approximation? In molecular spectroscopy you occasionally hear this term thro...
-
I welcome discussion on this point. I don't think it is as sensitive or as important a topic as the author order on papers. With rega...
-
If you look on the arXiv and in Nature journals there is a continuing stream of people claiming to observe superconductivity in some new mat...
The appendices in the Balents paper are great.
ReplyDeleteEntanglement spectra in fractional quantum Hall systems and Chern insulators has popped up a lot over the last couple of years. My understanding is that a gap in the entanglement spectrum can give information about topological order and is some sort of generalization of entanglement entropy (Haldane?).
The commentary by Vishvanath was very helpful.