Friday, January 27, 2012

Low Tc but strong Cooper pair binding

The plot below is an important one which I have been meaning to blog about for a while. It shows the strength of the diamagnetic signal [increasing from blue to purple to red]
from an underdoped cuprate superconductor as a function of magnetic field H and temperature T.
The figure is taken from a paper from Ong's group, discussed in an earlier post.
The superconducting transition temperature Tc is 12 K.  However, a magnetic field of about 45 tesla is required to destroy the diamagnetic signal which is associated with Cooper pairing. Furthermore, this "upper critical field" H_c2 is weakly temperature dependent. This large field scale reflects the large binding energy of the Cooper pairs. This can be seen by converting H_c2 to a coherence length (~30 A) and then an energy gap (~20 meV ~ 200 K) via a Pippard type formula [see this earlier Science paper by Ong et al.].  The energy gap is comparable to the pseudogap seen in ARPES and much smaller than k_B Tc.

1 comment:

  1. Prof. Prem raj Pushpakaran writes -- 2024 marks the centenary year of Bose-Einstein Statistics and let us celebrate the occasion!!! https://worldarchitecture.org/profiles/gfhvm/prof-prem-raj-pushpakaran-profile-page.html

    ReplyDelete

Why is the state of universities such an emotional issue for me?

It all about values! Universities have changed dramatically over the course of my lifetime. Australian universities are receiving increasing...