There is an interesting preprint
Viscosity Bound Violation in Viscoelastic Fermi Liquids
Matthew P. Gochan, Hua Li, Kevin S. Bedell
They consider the unitary Fermi gas within the framework of Fermi liquid theory. This system undergoes a superfluid transition at a temperature of about 0.17 times T_F (the Fermi temperature). They calculate the shear viscosity as a function of temperature. (I think) the complete temperature dependence is obtained by interpolating between the low-temperature and high-temperature limits.
The motivation for the study is the conjectured universal bound for the ratio of the shear viscosity to the entropy density, based on the AdS-CFT conjecture, beloved by string theorists.
The authors find that the conjectured bound is violated because the viscosity can become arbitrarily small near the superfluid transition due to large scattering from superfluid fluctuations. This is because the mean free path becomes arbitrarily small, i.e. the system is similar to a bad metal.
Unfortunately, the preprint does not reference some earlier relevant work on the shear viscosity of the unitary Fermi gas or on the bad metal near a Mott transition.
I thank Alejandro Mezio for bringing the preprint to my attention.
Subscribe to:
Post Comments (Atom)
Emergence and protein folding
Proteins are a distinct state of matter. Globular proteins are tightly packed with a density comparable to a crystal but without the spatia...
-
Is it something to do with breakdown of the Born-Oppenheimer approximation? In molecular spectroscopy you occasionally hear this term thro...
-
If you look on the arXiv and in Nature journals there is a continuing stream of people claiming to observe superconductivity in some new mat...
-
I welcome discussion on this point. I don't think it is as sensitive or as important a topic as the author order on papers. With rega...
No comments:
Post a Comment