Thursday, July 17, 2014

A quantum lower bound for the charge diffusion constant in strongly correlated metals?

Previously I posted about some interesting theory and cold atom experiments that suggest that the spin diffusion constant D has a lower bound of about hbar/m, where m is the particle mass.

Coincidentally, on the same day Sean Hartnoll posted a preprint, Theory of universal incoherent metallic transport. Based on results involving holographic duality [AdS/CFT] he conjectures that the diffusion constant satisfies the bound,

Dv2F/(kBT)

where v_F is the Fermi velocity.
I have pointed out to Sean that the ratio of this lower bound for D to the cold atom one (hbar/m) is
2 T_F/T where T_F is the Fermi temperature and T the temperature. Thus, the experiments [when normalised for trap effects] and the theory give a value of D about an order of magnitude smaller than Sean's lower bound. [My earlier post also references 2D cold atom experiments that give values for D several orders of magnitude smaller].
Sean raises the issue about how much m and T_F are renormalised by interactions. However, given that the spin susceptibility undergoes a small renormalisation it is not clear to me this will be significant.
Also, in a strongly interacting system charge and spin diffusion constants might be different.

In my post I pointed out the paucity of derivations of the central equation, the "Einstein relation", D=conductivity/susceptibility. However, Sean's preprint has a nice simple derivation of this based on conservation laws, but also showing how particle-hole asymmetry complicates things.

No comments:

Post a Comment

Science job openings in sunny Brisbane, Australia

Bribie Island, just north of Brisbane. The University of Queensland has just advertised several jobs that may be of interest to readers of t...