Previously I posted about the challenge of writing an effective talk abstract. Next week I am giving the Quantum Sciences Seminar at UQ. This is meant for mostly theorists working in quantum optics, BECs, quantum information, and condensed matter. Note the diverse audience. Below, I offer up for critique my abstract.
You can decide whether I was at all successful in pitching the abstract to my audience rather than just recycling one I used for a different more specialised audience. I have not prepared the talk yet. I will aim for the talk to be a less technical and specialised version of this one. Suggestions on how to do that are welcome.
Interlayer magnetoresistance as a probe of quantum coherence in layered metals
Many of the most scientifically interesting and technologically important electronic materials discovered in the past two decades have two common features:
a layered crystal structure and strong interactions between electrons.
Examples include the high-Tc cuprate superconductors and organic charge transfer salts.
Two fundamental questions about such layered metals concern the quantum coherence of interlayer charge transport and the coherence of excited states (quasi-particles) within the layers.
I will describe the theory needed to describe the dependence of the interlayer magnetoresistance on the direction of the applied magnetic field [angle dependent magnetoresistance (ADMR)] in a wide range of materials. ADMR can be understood as a semi-classical effect or in terms of the Aharonov-Bohm effect [1].
However, there is a diverse range of strongly correlated electron materials for which
this theory fails, even on a qualitative level: the angular dependence is the opposite to
that expected from the Lorentz force law [F = q v x B].
I will discuss how ADMR is sensitive to anisotropies around an intralayer Fermi surface. Consequently, it has been used to determine anisotropies in the Fermi surface, interlayer hopping, and quasi-particle scattering rate [2,3]. On the other hand, ADMR is not very sensitive to the quantum coherence of the interlayer transport [3,4].
This talk is aimed to be at a tutorial level with an emphasis on open problems rather than a detailed technical discussion of my own recent contributions.
[1] B.K. Cooper and V.M. Yakovenko, Phys. Rev. Lett. 96, 037001 (2006).
[2] M. Abdel-Jawad et al., Nature Physics 2, 821 (2006).
[3] M.P. Kennett and R. H. McKenzie, Phys. Rev. B 76, 054515 (2007).
[4] P. Moses and R.H. McKenzie, Phys. Rev. Lett. 81, 4492 (1998).
Subscribe to:
Post Comments (Atom)
Quantum states of matter and metrology
Two characteristics of states of matter are associated with them being referred to as quantum. One characteristic is the importance of quant...
-
Is it something to do with breakdown of the Born-Oppenheimer approximation? In molecular spectroscopy you occasionally hear this term thro...
-
If you look on the arXiv and in Nature journals there is a continuing stream of people claiming to observe superconductivity in some new mat...
-
I welcome discussion on this point. I don't think it is as sensitive or as important a topic as the author order on papers. With rega...
No comments:
Post a Comment