The comet C/2022 E3 (ZTF) getting a lot of attention, pointed out to me by my friend Alexey. Why is it green? This basic question turns out to be scientifically rich and has only recently been answered.
The green glow comes from a triplet excited state of diatomic carbon, C2. This got my interest because a decade ago I blogged on debates by quantum chemists about whether C2 involves a quadruple bond. Back in 1995, Roald Hoffmann wrote an interesting column in The American Scientist (and reproduced in his beautiful book Same and Not the Same) about the molecule and how it is present in various organometallic compounds and inorganic crystals.
Recent advances in understanding the photophysics of C2 were reported in 2021 in this paper.
Photodissociation of dicarbon: How nature breaks an unusual multiple bond
Jasmin Borsovszky, Klaas Nauta, Jun Jiang, Christopher S. Hansen, Laura K. McKemmish, Robert W. Field, John F. Stanton, Scott H. Kable, and Timothy W. Schmidt
..as dicarbon streams out of the comet core, it is destroyed by sunlight – this is why the comet tail, unlike the coma, is colourless. However, the precise mechanism of this supposed photodissociation had remained unclear.
Researchers in Australia and the US have now for the first time observed diatomic carbon’s photodissociation in the lab. The team produced dicarbon by photolysing tetrachloroethylene, and then breaking it apart with laser pulses. This allowed them to determine its bond dissociation energy with the same precision as for oxygen and nitrogen. Previous measurements for dicarbon had uncertainties an order of magnitude higher than for other diatomic molecules.
To break its quadruple bond, the molecule must absorb two photons and undergo two ‘forbidden’ transitions, those that break spectroscopic rules. Cometary dicarbon, the researchers calculated, has a lifetime of around two days until sunlight breaks it apart – the reason why its colour is visible in the coma but not in the tail.
No comments:
Post a Comment