Friday, July 2, 2021

Sweet demonstrations of phase transitions

This week my wife and I did some science experiments with kids, aged about 8-12, at a holiday kids club organised by our church. The first day we did rockets, using the old standbys of baking soda rockets and mentos and coke.

On the second day, we did the science of chocolate. Ten years ago (!) we had done this based on some demonstrations developed at Harvard, described in this paper The Science of Chocolate: Interactive Activities on Phase Transitions, Emulsification, and Nucleation

Teaching kids about phase transitions with ice and steam is not quite as exciting or memorable as them melting chocolate in their mouths. An important scientific idea is:

Physical properties of matter (such as melting temperature) change with differences in chemical composition.

This is illustrated by the different melting temperatures of white, milk, and dark chocolate.

We also tried to mix water and oil, with and without the presence of detergent. This illustrates ideas about emulsification, including hydrophobic interactions. This is relevant to the production of nice smooth and uniform chocolate because the cocoa powder can only dissolve in the cocoa butter when an emulsifier is present.

Discussing chocolate is also an opportunity to discuss Milton Hershey (USA) and the Cadbury family (UK). They were not only philanthropists but were proactive in taking care of employees and their families, e.g. constructing schools, parks, and affordable housing. Richard and George Cadbury developed the garden village of Bournville; now a major suburb of Birmingham. I particularly like this sentence in the Wikipedia entry on George Cadbury, showing how he was far ahead of his time.

In 1901, disgusted by the imperialistic policy of the Balfour government and opposed to the Boer War, Cadbury bought the Daily News and used the paper to campaign for old age pensions and against the war and sweatshop labour.[4]

Other scientific articles of interest include the following. The first two discuss how there are six different polymorphs (crystal structures) of chocolate. The competition between these states comes into play with tempering, snapping, shine, and smoothness. [Aside: In general, calculating the relative energies of different polymorphs of molecular materials is a major scientific challenge.]

Chocolate: A Marvelous Natural Product of Chemistry, Ginger Tannenbaum

Using Differential Scanning Calorimetry To Explore the Phase Behavior of Chocolate Michael J. Smith

The kitchen as a physics classroom Amy C Rowat, Naveen N Sinha, Pia M Sörensen, Otger Campàs, Pere Castells, Daniel Rosenberg, Michael P Brenner and David A Weitz

No comments:

Post a Comment

A very effective Hamiltonian in nuclear physics

Atomic nuclei are complex quantum many-body systems. Effective theories have helped provide a better understanding of them. The best-known a...