Tuesday, April 14, 2020

Phil Anderson (1923-2020): theoretical physicist extraordinaire

Phil Anderson died two weeks ago. There have been many obituaries, including at The New York Times, Not Even Wrong (Peter Woit), and Nanoscale Views (Doug Natelson). Few would argue that he was the greatest condensed matter theorist of the second half of the twentieth century. I would go further and suggest that he and Ken Wilson were the greatest theoretical physicists of the second half of the twentieth century. Anderson's scientific legacy extends far beyond condensed matter physics.

More than sixty posts on this blog include ``P.W. Anderson'' in the label. There is no doubt that Anderson is the largest intellectual influence on this blog.

Phil Anderson made incredibly diverse and valuable contributions to condensed matter physics (anti-ferromagnetism, localisation, weak localisation, magnetic impurities in metals, Kondo problem, poor mans scaling, superfluid 3He, spin liquids, RVB theory of superconductivity... ).

It is noteworthy that Anderson applied scaling to condensed matter before Wilson. In the late 1960s he wrote a series of papers on ``poor man's scaling" for the Kondo problem.

I can think of several significant and profound influences of Phil beyond condensed matter physics.

1. Codifying and elucidating the concept of emergence (and the limitations of reductionism) in all of science, in More is Different in 1972.
[Although it should be acknowledged that the word ``emergence'' does not appear in the article and that Michael Polanyi developed similar ideas about emergence earlier.]

2. Nambu referenced several papers by Anderson about superconductivity in his seminal papers on the mass of elementary particles and symmetry breaking.

3. Laying the groundwork for the Higgs boson in 1963 by connecting spontaneous gauge symmetry breaking and mass. 

4. Elucidating spin glasses in a way that was key to John Hopfield's development of a particular neural network and to the notion of a "rugged landscape", relevant in protein folding and evolution. Anderson described these connections nicely in two pages in Physics Today in 1990.

Phil had a significant influence on my own job/career trajectory. For my Princeton Ph.D. I worked with Jim Sauls on superfluid 3He, which Phil supported financially. He was on the committee for my Ph.D. thesis defense in 1988. In 1993, towards the end of a postdoc, my job prospects were extremely slim. Phil told me that he had been asked to review an application I made for a five-year research fellowship back in Australia. My success was probably based on a positive review from Phil. I regret that during my time as a graduate student I did not have the confidence to interact much with him. However, from about 1995 to 2002, I made a visit to Princeton practically every year and had some nice discussions with him. It was also fascinating to see the close personal and scientific relationship that Phil and N.P. Ong had; it was clearly mutually very beneficial.
One cryptic comment: ``look at the metal-insulator-metal tunneling theory from the 1960s" [I found Mahan has a nice discussion] set me on the right path to do the calculations in this paper, about angle-dependent-magnetoresistance oscillations in layered metals.


I highly recommend the Anderson anthologies (reprint collections), listed below in order of increasing technical difficulty.

More and Different: notes from a thoughtful curmudgeon.
It is a collection of essays on wide-ranging subjects: personal reminiscences, history, philosophy, sociology, science wars, ...
Some of these have been published before but many have not.

A Career in Theoretical Physics
Something amazing about this collection of papers is what is not in it; e.g. his papers on superfluid 3He with Brinkman, or on charge ordering and antiferromagnetism in ferrites.

Basic Notions of Condensed Matter Physics

Andrew Zangwill is working on a scientific biography of Phil Anderson. I am looking forward to reading.

No comments:

Post a Comment

Emergence and protein folding

Proteins are a distinct state of matter. Globular proteins are tightly packed with a density comparable to a crystal but without the spatia...