The ``external field" is one half of the Gibbs free energy difference between the LS and HS states. The physical origin of the J interaction is ``believed to be'' elastic, not magnetic interactions. A short and helpful review of the literature is by Pavlik and Boca.
Important questions are:
1. What is a realistic model that can explain how J arises due to elastic interactions?
2. How does one calculate J from quantum chemistry calculations?
3. How does one estimate J for a specific material from experimental data?
4. What are typical values of J?
I will focus on the last two questions.
One can do a mean-field treatment of the Ising model, leading to a model free energy for the whole system that has the same form as that of an ideal binary mixture of two fluids where
x = (1 + av(s_i)
The free energy of interaction between the two "fluids" is of the form -Gamma x^2.
Gamma is often referred to as the ``co-operativity" parameter.
Minimising the free energy versus x gives a self-consistent equation for x(T).
This can be compared to experimental data for x vs T, e.g. from the magnetic susceptibility, and a Gamma value extracted for a specific material.
Values for Gamma obtained in this way for a wide-range of quasi-one-dimensional materials [with covalent bonding (i.e. strong elastic interactions) between spin centres] are given in Tables 1 and 2 of Roubeau et al. The values of Gamma are in the range 2-10 kJ/mol. In temperature units this corresponds to 240-1200 K.
My calculations [which may be wrong] give that Gamma = 4 J z, where z is the number of nearest neighbours in the Ising model. This means that (for a 1d chain with z=2) that J is in the range of 0.3-1.5 kJ/mol, or 30-150 K.
In many spin-crossover materials, the elastic interactions are via van der Waals, hydrogen bonding, or pi-stacking interactions. In that case, we would expect smaller values of J.
This is consistent with the following.
An analysis of a family of alloys by Jakobi et al. leads to a value of Gamma of 2 kJ/mol.
[See equation 9b. Note B=Gamma=150 cm^-1. Also in this paper x is actually denoted gamma and x denotes the fraction of Zn in the material.].
I thank members of the UQ SCO group for all they are teaching me and the questions they keep asking.
No comments:
Post a Comment