Tuesday, October 7, 2014

Kelvin formula for thermopower in bad metals

Jure Kokalj and I just finished a paper,
Enhancement of the thermoelectric power by electronic correlations in bad metals: a study of the Kelvin formula 

In many strongly correlated electron metals the thermoelectric power has a non-monotonic temperature dependence and values that are orders of magnitude larger than for elemental metals. Kelvin proposed a particularly simple expression for the thermopower in terms of the temperature dependence of the chemical potential. We consider a Hubbard model on an anisotropic triangular lattice at half filling, a minimal effective Hamiltonian for several classes of organic charge transfer salts. The finite temperature Lanczos method is used to calculate the temperature dependence of the thermopower using the Kelvin formula. We find that electronic correlations significantly enhance the magnitude of the thermopower and lead to a non-monotonic temperature dependence. The latter reflects a crossover with increasing temperature from a Fermi liquid to a bad metal. Although, the Kelvin formula gives a semi-quantitative description of some experimental results it cannot describe the directional dependence of the sign of the thermopower in some materials.



No comments:

Post a Comment

Emergence and protein folding

Proteins are a distinct state of matter. Globular proteins are tightly packed with a density comparable to a crystal but without the spatia...