In the cuprate superconductors there is a value of the doping at which the superconducting transition temperature is a maximum (optimal doping). Coincidentally (?) this also seems to the doping at which the metallic phase is most non-Fermi liquid like. Some theories (especially due to Varma) try and connect these two phenomena via a quantum critical point below the superconducting dome. An earlier post discusses how the entropy is maximal and the thermopower changes sign near optimal doping.
A cluster DMFT (Dynamical Mean-Field Theory) calculation by Kristian Haule reproduces the correlation between high-Tc and anomalous metallic properties. The figure below shows the Matsubara frequency dependence of the imaginary part of the self energy (at wave vector (0,pi) = anti-nodal region) (top) and the anomalous self energy (related to the superconducting pairing) for different dopings.
In a simple Fermi liquid the slope of the upper curve at low frequencies is related to the quasi-particle weight.
Haule concludes the quasi-particles are most incoherent and the scattering rate the largest around optimal doping.
Subscribe to:
Post Comments (Atom)
Why is the state of universities such an emotional issue for me?
It all about values! Universities have changed dramatically over the course of my lifetime. Australian universities are receiving increasing...
-
This week Nobel Prizes will be announced. I have not done predictions since 2020 . This is a fun exercise. It is also good to reflect on w...
-
Is it something to do with breakdown of the Born-Oppenheimer approximation? In molecular spectroscopy you occasionally hear this term thro...
-
Nitrogen fluoride (NF) seems like a very simple molecule and you would think it would very well understood, particularly as it is small enou...

grt
ReplyDelete