Saturday, August 29, 2009

Watching Mott and Hubbard kill quasi-particles

This morning I gave a seminar, "Destruction of quasi-particles near the Mott insulator transition" to the Condensed Matter Physics group at University of Toronto. A few points I tried to emphasize in the talk were:

The frequency dependent optical conductivity is a powerful probe of many-body effects in strongly correlated electron materials. In particular, for a wide range of materials one observes a significant redistribution of spectral weight, with only a small amount of weight in the Drude peak, which often only exists at temperatures much less than the energy scales associated with the band structure.

The absence of a Drude peak is associated with destruction of Fermi-liquid quasi-particles. Other signatures of a bad metal include a non-monotonic temperature dependence of the resistivity, thermopower, and Hall constant.



Dynamical mean-field theory gives a quantitative description of the redistribution of spectral weight in organic charge transfer salts near the Mott-Hubbard insulating phase.

The talk was largely based on this PRL, a combined theory and experiment work.

No comments:

Post a Comment

Elastic interactions and complex patterns in binary systems

One of the many beauties of condensed matter physics is that it can reveal and illuminate how two systems or phenomena that at first appear ...