Friday, August 22, 2025

The two-state model for spin crossover in organometallics

Previously, I discussed how spin-crossover is a misnomer for organometallic compounds and proposed that an effective Hamiltonian to describe the rich states and phase transitions is an Ising model in "magnetic field".

I introduce the two-state model that defines the model without the Ising interactions. To save me time on formatting in HTML, here is a pdf file that describes the model and what comparisons with experimental data (such as that below) tells us.

Future posts will consider how elastic interactions produce the Ising interaction and how frustrated interactions can produce multi-step transitions.

Wednesday, August 13, 2025

My review article on emergence

I just posted on the arXiv a long review article on emergence

Emergence: from physics to biology, sociology, and computer science

The abstract is below.

I welcome feedback. 

------

Many systems of interest to scientists involve a large number of interacting parts and the whole system can have properties that the individual parts do not. The system is qualitatively different to its parts. More is different. I take this novelty as the defining characteristic of an emergent property. Many other characteristics have been associated with emergence are reviewed, including universality, order, complexity, unpredictability, irreducibility, diversity, self-organisation, discontinuities, and singularities. However, it has not been established whether these characteristics are necessary or sufficient for novelty. A wide range of examples are given to show how emergent phenomena are ubiquitous across most sub-fields of physics and many areas of biology and social sciences. Emergence is central to many of the biggest scientific and societal challenges today. Emergence can be understood in terms of scales (energy, time, length, complexity) and the associated stratification of reality. At each stratum (level) there is a distinct ontology (properties, phenomena, processes, entities, and effective interactions) and epistemology (theories, concepts, models, and methods). This stratification of reality leads to semi-autonomous scientific disciplines and sub-disciplines. A common challenge is understanding the relationship between emergent properties observed at the macroscopic scale (the whole system) and what is known about the microscopic scale: the components and their interactions. A key and profound insight is to identify a relevant emergent mesoscopic scale (i.e., a scale intermediate between the macro- and micro- scales) at which new entities emerge and interact with one another weakly. In different words, modular structures may emerge at the mesoscale. Key theoretical methods are the development and study of effective theories and toy models. Effective theories describe phenomena at a particular scale and sometimes can be derived from more microscopic descriptions. Toy models involve minimal degrees of freedom, interactions, and parameters. Toy models are amenable to analytical and computational analysis and may reveal the minimal requirements for an emergent property to occur. The Ising model is an emblematic toy model that elucidates not just critical phenomena but also key characteristics of emergence. Many examples are given from condensed matter physics to illustrate the characteristics of emergence. A wide range of areas of physics are discussed, including chaotic dynamical systems, fluid dynamics, nuclear physics, and quantum gravity. The ubiquity of emergence in other fields is illustrated by neural networks, protein folding, and social segregation. An emergent perspective matters for scientific strategy, as it shapes questions, choice of research methodologies, priorities, and allocation of resources. Finally, the elusive goal of the design and control of emergent properties is considered.

Spin crossover is a misnomer

There are hundreds of organometallic compounds that are classified as spin-crossover compounds. As the temperature is varied the average spin per molecule can undergo a transition between low-spin and high-spin states.

The figure below shows several classes of transitions that have been observed. The vertical axis represents the fraction of molecules in the high-spin state, and the horizontal axis represents temperature.


a) A smooth crossover. At the temperature T_{1/2} there are equal numbers of high and low spins.

b) There is sharp transition with the curve having a very large slope at T_{1/2}.

c) There is a discontinuous change in the spin fraction at the transition temperature, the value of which depends on whether the temperature is increasing or decreasing, i.e., there is hysteresis. The discontinuity and hysteresis are characteristic of a first-order phase transition.

d) There is a step in the curve when the high-spin fraction is close to 0.5. This is known as a two-step transition.

e) Although a crossover occurs, the system never contains only low- or high-spins.

But, there is more. Over the past decade, multiple-step transitions have been observed. An example of a four-step transition is below.
Hysteresis is present and is larger at lower temperatures.

In a few cases of multiple-step transitions on the down-temperature sweep, the first step is missing compared to the up-temperature step.

Given the diverse behaviour described above, including sharp transitions and first-order phase transitions, spin "crossover" is a misnomer.

More importantly, given the chemical and structural complexity materials involved, is there a simple model effective Hamiltonian that can capture all this diverse behaviour?

Yes. An Ising model in a field. A preliminary discussion is here. I hope to discuss this in future posts. But first I need to introduce the simple two-state model and show what it can and cannot explain.

Saturday, August 2, 2025

Science job openings in sunny Brisbane, Australia

Bribie Island, just north of Brisbane.

The University of Queensland has just advertised several jobs that may be of interest to readers of this blog, particularly those seeking to flee the USA.

There is a junior faculty position for a theorist working at the interface of condensed matter, quantum chemistry, and quantum computing.

There is also a postdoc to work on the theory of strongly correlated electron systems with my colleagues Ben Powell and Carla Verdi.

There is a postdoc in experimental condensed matter, to work on scanning probe methods, such as STM, with my colleague Peter Jacobson.

Glasshouse Mountains. Just north of Brisbane.

The two-state model for spin crossover in organometallics

Previously, I discussed how spin-crossover is a misnomer for organometallic compounds and proposed that an effective Hamiltonian to describe...