In the previous post, I considered five different characteristics that are often associated with emergence and classified them as being associated with ontology (what is real and observable) rather than epistemology (what we believe to be true).
Below I consider five more characteristics: self-organisation, unpredictability, irreducibility, contextuality and downward causation, and intra-stratum closure.
6. Self-organisation
Self-organisation is not a property of the system but a mechanism that a theorist says causes an emergent property to come into being. Self-organisation is also referred to as spontaneous order.
In the social sciences self-organisation is sometimes referred to as an endogenous cause, in contrast to an exogenous cause. There is no external force or agent causing the order, in contrast to order that is imposed externally. For example, suppose that in a city there is no government policy about the price of a loaf of sliced wholemeal bread or on how many loaves that bakers should produce. It is observed that prices are almost always in the range of $4 to $5 per loaf, and that rarely are there bread shortages. This outcome is a result of the self-organisation of the free-market, and economists would say the price range and its stability has an endogenous cause. In contrast, if the government legislated the price range and the production levels that would be an exogenous cause. Friedrich Hayek emphasised the role of spontaneous order in economics. In biology, Stuart Kaufmann equates emergence with spontaneous order and self-organisation.
In physics, the periodicity of the arrangement of atoms in a crystal is a result of self-organisation and has an endogenous cause. In contrast, the periodicity of atoms in an optical lattice is determined by the laser physicist who creates the lattice and so has an exogenous cause.
Self-organisation shows how local interactions can produce global properties. In different words, short-range interactions can lead to long-range order. After decades of debate and study, the Ising model showed that this was possible. Other examples of self-organisation, include flocking of birds and teamwork in ant colonies. There is no director or leader but the system acts “as if” there is.
7. Unpredictability
Ernst Mayr (This is Biology, p.19) defines emergence as “in a structured system, new properties emerge at higher levels of integration that could not have been predicted from a knowledge of the lower-level components.” Philip Ball also defines emergence in terms of unpredictability (Quanta, 2024).
More broadly, in discussions of emergence, “prediction” is used in three different senses: logical prediction, historical prediction, and dynamical prediction.
Logical prediction (deduction) concerns whether one can predict (calculate) the emergent (novel) property of the whole system solely from a knowledge of all the properties of the parts of the system and their interactions. Logical predictability is one of the most contested characteristics of emergence. Sometimes “predict” is replaced with “difficult to predict”, “extremely difficult to predict”, “impossible to predict”, “almost impossible to predict”, or “possible in principle, but impossible in practice, to predict.”
As an aside, I note that philosophers distinguish between epistemological emergence and ontological emergence. They are associated with prediction that is "possible in principle, but difficult in practice" and "impossible in principle" respectively.
After an emergent property has been discovered experimentally sometimes it can be understood in terms of the properties of the system parts. In a sense “pre-diction” then becomes “post-diction.” An example is the BCS theory of superconductivity, which provided a posteriori, rather than a priori, understanding. In different words, development of the theory was guided by a knowledge of the phenomena that had already been observed and characterised experimentally. Thus, a keyword in the statement above about logical prediction is “solely”.
Historical prediction. Most new states of matter discovered by experimentalists were not predicted even though theorists knew the laws that the microscopic components of the system obeyed. Examples include superconductivity (elemental metals, cuprates, iron pnictides, organic charge transfer salts, …), superfluidity in liquid 4He, antiferromagnetism, quasicrystals, and the integer and fractional quantum Hall states.
There are a few exceptions where theorists did predict new states of matter. These include are Bose-Einstein Condensates (BECs) in dilute atomic gases and topological insulators, the Anderson insulator in disordered metals, the Haldane phase in even-integer quantum antiferromagnetic spin chains, and the hexatic phase in two dimensions. It should be noted that prediction of BECs and topological insulators were significantly helped that theorists could predict them starting with Hamiltonians of non-interacting particles. Furthermore, all of these predictions involved working with effective Hamiltonians. None started with microscopic Hamiltonians for specific materials.
Dynamical unpredictability concerns what it means in chaotic dynamical systems, where it relates to sensitivity to initial conditions. I do not see this as an example of emergence as it can occur in systems with only a few degrees of freedom. However, some authors do associate dynamical unpredictability with complexity and emergence.
8. Irreducibility and singularities
An emergent property cannot be reduced to properties of the parts, because if emergence is defined in terms of novelty, the parts do not have the property.
Emergence is also associated with the problem of theory reduction. Formally, this is the process where a more general theory reduces in a particular mathematical limit to a less general theory. For example, quantum mechanics reduces to classical mechanics in the limit where Planck’s constant goes to zero. Einstein’s theory of special relativity reduces to Newtonian mechanics in the limit where the speeds of massive objects become much less than the speed of light. Theory reduction is a subtle philosophical problem that is arguably poorly understood both by scientists [who oversimplify or trivialise it] and philosophers [who arguably overstate the problems it presents for science producing reliable knowledge]. Subtleties arise because the two different theories usually involve language and concepts that are "incommensurate" with one another.
Irreducibility is also related to the discontinuities and singularities associated with emergent phenomena. As emphasised independently by Hans Primas and Michael Berry, singularities occur because the mathematics of theory reduction involves singular asymptotic expansions. Primas illustrates this by considering a light wave incident on an object and producing a shadow. The shadow is an emergent property, well described by geometrical optics, but not by the more fundamental theory of Maxwell’s electromagnetism. The two theories are related in the asymptotic limit that the wavelength of light in Maxwell’s theory tends to zero. This example illustrates that theory reduction is compatible with the emergence of novelty. Primas also considers how the Born-Oppenheimer approximation, which is central to solid state theory and quantum chemistry, is associated with a singular asymptotic expansion (in the ratio of the mass of an electron to the mass of an atomic nuclei in the system).
Berry considers several other examples of theory reduction, including going from general to special relativity, from statistical mechanics to thermodynamics, and from viscous (Navier-Stokes) fluid dynamics to inviscid (Euler) fluid dynamics. He has discussed in detail how the caustics that occur in ray optics are an emergent phenomena and are associated with singular asymptotic expansions in the wave theory.
The philosopher of science Jeremy Butterfield showed rigorously that theory reduction occurred for four specific systems that exhibited emergence, defined by him as a novel and robust property. Thus, novelty is not sufficient for irreducibility.
9. Contextuality and downward causation
Any real system has a context. For example, it has boundary and an environment, both in time and space. In many cases the properties of the system are completely determined by the parts of the system and their interactions. Previous history and boundaries do not matter. However, in some cases the context may have a significant influence on the state of the system. An example is Rayleigh-Bernard convection cells and turbulent flow whose existence and nature are determined by the interaction of the fluid with the container boundaries. A biological example concerns what factors determine the structure, properties, and function that a particular protein (linear chain of amino acids) has. It is now known that the only factor is not just the DNA sequence that encodes for the amino acid sequence, in contradiction to some versions of the Central Dogma of molecular biology. Other factors may be the type of cell that contains the protein and the network of other proteins in which the particular protein is embedded. Context sometimes matters.
Supervenience is the idea that once the micro level is fixed, macro levels are fixed too. The examples above might be interpreted as evidence against supervenience. Supervenience is used to argue against “the possibility for mental causation above and beyond physical causation.”
Downward causation is sometimes equated with emergence, particularly in debates about the nature of consciousness. In the context of biology, Denis Noble defines downward causation as when higher level processes can cause changes in lower level properties and processes. He gives examples where physiological effects can switch on and off individual genes or signalling processes in cells, including maternal effects and epigenetics.
10. Intra-stratum closure: informational, causal, and computational
The ideas described below were recently developed by Rosas et al. from a computer science perspective. They defined emergence in terms of universality and discussed its relationship to informational closure, causal closure, and computational closure. Each of these are given a precise technical definition in their paper. Here I give the sense of their definitions. In considering a general system they do not pre-define the micro- and macro- levels of a system but consider how they might be defined so that universality holds, i.e., so that properties at the macro-level are independent of the details of the micro-level (i.e., are universal).
Informational closure means that to predict the dynamics of the system at the macroscale an observer does not need any additional information about the details of the system at the microscale. Equilibrium thermodynamics and fluid dynamics are examples.
Causal closure means that the system can be controlled at the macroscale without any knowledge of lower-level information. For example, changing the software code that is running on a computer allows one to reliably control the microstate of the hardware of the computer regardless of what is happening with the trajectories of electrons in the computer.
Computational closure is a more technical concept, being defined in terms of “a conceptual device called the ε-(epsilon) machine. This device can exist in some finite set of states and can predict its own future state on the basis of its current one... for an emergent system that is computationally closed, the machines at each level can be constructed by coarse-graining the components on just the level below: They are, “strongly lumpable.” "
Rosas et al., show that informational closure and causal closure are equivalent and that they are more restrictive than computational closure. It is not clear to me how these closures relate to novelty as a definition of emergence.
No comments:
Post a Comment