Monday, September 11, 2023

Amazing things about Chandrasekhar's white dwarf mass limit

This is ultra-condensed matter physics!

In 1931, Subrahmanyan Chandrasekhar published a seminal paper, for which he was awarded the Nobel Prize in 1983. He showed that a white dwarf star must have a mass less than 1.4 solar masses, otherwise it will collapse under gravity. White dwarfs are compact stars for which the nuclear fuel is spent and electron degeneracy pressure prevents gravitational collapse. 

The blog Galileo unbound has a nice post about the history and the essential physics behind the paper.

There are a several things I find quite amazing about Chandrasekhar's derivation  and the expression for the maximum possible mass. 

m_H is the mass of a proton. M_P is the Planck mass. The value of the mass limit is about 1.4 solar masses.

Relativity matters

If the electrons are treated non-relativistically then there is no mass limit. However, when the star becomes dense enough the Fermi velocity of the electrons approaches the speed of light. Then relativistic effects must be included.

A macroscopic quantum effect

Degeneracy pressure is a macroscopic quantum effect. The expression above involves Planck's constant.

Quantum gravity

The mass formula involves the Planck mass, M_P.  On the one hand, this phenomena does not involve quantum gravity because there is no quantisation of the gravitational field. On the other hand, the effect does involve the interplay of gravity and quantum physics.

A "natural" scale

Formula that involve Planck scales usually represent scales of length, energy, mass, time, and temperature that are "unreal", i.e., they are vastly different from terrestial and astrophysical phenomena. For example, the temperature of the Hawking radiation from a black hole of one solar mass is 60 nanoKelvin. 

In contrast, the limiting mass is on the same scale as that of our own sun!

It agrees with astronomical observations

Determinations of the masses of hundreds of white dwarfs show most have a mass of about 0.5 solar masses and the highest observed value is 1.3 solar masses.


2 comments:

  1. While most of the Planck units are indeed very far from terrestrial or astrophysical scales, the Planck mass is around 20 micrograms. While small, it is not unfathomably so. Humans can see objects of such size (and even smaller) with the naked eye. It's about the weight of an eyelash for example. There are many living creatures whose mass is well below this mass scale (not to mention microscopic cells and whatnot).

    ReplyDelete
    Replies
    1. Thanks for the comment. That is helpful. I should have known that but did not.

      Delete

A very effective Hamiltonian in nuclear physics

Atomic nuclei are complex quantum many-body systems. Effective theories have helped provide a better understanding of them. The best-known a...