Different dimensions to emergence for specific scientific disciplines

Emergence is a concept relevant to a wide range of scientific disciplines, from physics to sociology. Emergence is also at the heart of some of the biggest questions and challenges in each discipline. How might I justify that claim? How do we move beyond "emergence" just being a trendy buzzword?

Here I suggest some different facets of a specific discipline that with an emergent perspective may help to understand the discipline and to plan scientific strategy. This post will be primarily descriptive and the next prescriptive. Later I will illustrate both aspects with specific disciplines. Although, some of the facets below may be somewhat obvious, others are profound. 

Presence of distinct scales. Scales may involve length, time, or number of components in a system of interest. Different phenomena are observed at different scales.

Stratification and separation of scales. Distinct phenomena as usually seen over some range of scale and a distinct stratum can be associated with that scale. 



The image is from here.

Sub-disciplines (or sub-fields) are associated with each stratum. The discipline can be viewed as stratified. For example, biology has sub-disciplines associated with ecosystems, organisms (animals and plants), organs, cells, genes, and molecules. This is nicely captured in a series of articles in The Economist.

The system can be viewed as interacting components. The system of interest is composed of many parts. Identifying the relevant components and their interactions may be non-trivial or at least was in the past. For example, consider the discovery of atoms in chemistry, quarks in nuclear physics, Cooper pairs in superconductivity, and DNA in genetics.

Emergent properties. Systems of interest have distinct properties that the components of the system do not. These properties may have certain characteristics such as universality, irreducibility, or unpredictability.

Emergent entities. These distinct entities can only be defined at certain scales and emerge from interactions between components that are defined at some smaller scale. In biology, emergent entities include organisms, organs, cells, genes, and proteins. In condensed matter physics emergent entities include quasiparticles and topological defects.

Emergent phenomena. This is closely related to emergent properties and may be redundant. But a property is something that a system has and a phenomenon is something that it does. 

Different experimental probes for different scales. For example, for condensed matter different types of electromagnetic radiation from x-rays to microwaves are used to investigate a material at different length scales. The nature of the instruments used and the type and quality of information gained can be quite different for the different scales.

Simple theoretical models of interacting components.  From the perspective of the smallest scales most systems with emergent properties are complex in that they involve many degrees of freedom and so large amounts of information and parameters are required to define the state of the system. The system may also be complex in the sense that the emergent properties are non-trivial and hard to describe theoretically. But with insight simple models with just a few parameters and state variables can exhibit and describe the emergent properties. Examples of such models in condensed matter physics include Ising, Hubbard, and non-linear sigma models. Examples from sociology include agent-based models such as the Schelling model for racial segregation. Simple models can be viewed as effective theories, valid at a particular scale, and can illustrate universality.

Organising principles and concepts at each scale. The principles and concepts are only meaningful and relevant at a particular scale. An example from condensed matter physics and elementary particle physics is spontaneous symmetry breaking.

In another post, I will discuss how an emergentist perspective plays out in scientific strategy.

Comments

Popular posts from this blog

What is Herzberg-Teller coupling?

Is it an Unidentified Superconducting Object (USO)?

What should be the order of authors on a conference poster or talk?