One puzzle concerning organic charge transfer salts (such as those based on the BEDT-TTF molecule) is how the Mott metal-insulator transition can be tuned with substituting hydrogen with deuterium. I find it particularly puzzling because the relevant hydrogen bonds are weak and so one does not expect significant isotope effects.
Similar concerns are relevant to cases of isotopic polymorphism [where the actual crystal structure changes] in molecular crystals such as pyridine.
I recently came across a nice example that I do understand.
Hydrogen-Bond-Dynamics-Based Switching of Conductivity and Magnetism: A Phase Transition Caused by Deuterium and Electron Transfer in a Hydrogen-Bonded Purely Organic Conductor Crystal
Akira Ueda, Shota Yamada, Takayuki Isono, Hiromichi Kamo, Akiko Nakao, Reiji Kumai, Hironori Nakao, Youichi Murakami, Kaoru Yamamoto, Yutaka Nishio, and Hatsumi Mori
The key to understanding how H/D substitution changes the electronic state is that there is a hydrogen bond between two of the organic molecules with an oxygen-oxygen distance of 2.45 A. As highlighted (and explained) in this paper, around this distance the geometric isotope effect is largest (the H bond length increases to almost 2.5 A), leading to a significant change in the energy barrier for proton transfer.
The figure below nicely shows, using DFT-based calculations and the measured crystal structures for both isotopes at two different temperatures, how the barrier changes, leading to a change in the charge state of the molecules.
The H and D isotopes are at the top and the bottom, respectively.
Subscribe to:
Post Comments (Atom)
A very effective Hamiltonian in nuclear physics
Atomic nuclei are complex quantum many-body systems. Effective theories have helped provide a better understanding of them. The best-known a...
-
Is it something to do with breakdown of the Born-Oppenheimer approximation? In molecular spectroscopy you occasionally hear this term thro...
-
If you look on the arXiv and in Nature journals there is a continuing stream of people claiming to observe superconductivity in some new mat...
-
I welcome discussion on this point. I don't think it is as sensitive or as important a topic as the author order on papers. With rega...
No comments:
Post a Comment