It is amazing since a common science project for school children is to make blue crystals of copper sulphate [CuSO4.5H2O]!
[Although I was surprised and disappointed when my son just told me he never did it].
Perhaps, one may not have to look so hard for quantum materials.
The first X-ray crystallography experiment [by von Laue] was also performed on copper sulphate pentahydrate.
It turns out that the Cu2+ ions (spin-1/2) form chains that are very weakly coupled to one another and so are effectively one-dimensional antiferromagnetic Heisenberg chains above the three-dimensional Neel ordering temperature of about 100 mK.
[Caveat: strictly speaking half of the Cu2+ ions form chains; the other half are essentially isolated and non-interacting].
Minor caveat: the relevant intrachain exchange interaction J ~ 0.25 meV and so one only sees the spinons for temperatures of order a Kelvin.
I first learned all this in the introduction of this Nature Physics paper.
Subscribe to:
Post Comments (Atom)
Quantum states of matter and metrology
Two characteristics of states of matter are associated with them being referred to as quantum. One characteristic is the importance of quant...
-
Is it something to do with breakdown of the Born-Oppenheimer approximation? In molecular spectroscopy you occasionally hear this term thro...
-
If you look on the arXiv and in Nature journals there is a continuing stream of people claiming to observe superconductivity in some new mat...
-
I welcome discussion on this point. I don't think it is as sensitive or as important a topic as the author order on papers. With rega...
I grow nice crystals of this stuff at home with commercial "Root Kill" from the hardware store.
ReplyDeleteGeballe mentions growing a 1400g single crystal for his graduate work in his recent Annual Review article:
http://www.annualreviews.org/doi/abs/10.1146/annurev-conmatphys-030212-184246
I could look at that rock all day, honestly. What a nice colour.
ReplyDelete