Tuesday, October 8, 2019

2019 Nobel Predictions

It is that time of year again. I have not made predictions for a few years.

For physics this year I predict
Experiments for testing Bell inequalities and elucidating the role of entanglement in quantum physics
Alan Aspect, John Clauser, and Anton Zeilinger
They received the Wolf Prize in 2010, a common precursor to the Nobel.

My personal preference for the next Nobel for CMP would be centred around Kondo physics, since that is such a paradigm for many-body physics, maybe even comparable to BCS.

Kondo effect and heavy fermions
Jun Kondo, Frank Steglich, David Goldhaber-Gordon

Arguably the latter two might be replaced with others who worked on heavy fermions and/or Kondo in quantum dots.
Steglich discovered heavy fermion superconductivity.
Goldhaber-Gordon realised tuneable Kondo and Anderson models in quantum dots (single-electron transistors).

Unlike many, I still remain to be convinced that topological insulators is worthy of a Nobel.

For chemistry, my knowledge is more limited. However, I would go for yet another condensed matter physicist to win the chemistry prize: John Goodenough, inventor of the lithium battery.
He also made seminal contributions to magnetism, random access memories, and strongly correlated electron materials.

What do you think?

Postscripts (October 10).

I got confused about the day of the physics prize and I think when I posted my ``prediction'' the prize may have already been announced.

A few years ago I read Goodenough's fascinating autobiography. It was actually in that book that I learned about U. Chicago requiring PhD students to publish a single author paper. This observation featured in my much commented on recent post about PhD theses.

I also have a prediction for the Peace Prize. First, I hope it is not Greta Thunberg, as much as I admire her and agree with the importance of her cause. I worry whether it may ruin her life.
My wife suggested the Prime Minister of Ethiopia, Abiy Ahmed and the President of Eritrea, Isaias Afwerki. I find it truly amazing what Ahmed has achieved.
Another great choice would be some of the leaders of Armenia, which has seen significant increases in human rights, political freedoms, and freedom the press. It was selected as The Economist's country of the year in 2018.

Estimating the Ising interaction in spin-crossover compounds

I previously discussed how one of the simplest model effective Hamiltonians that can describe many physical properties of spin-crossover compounds is an Ising model in an external "field". The s_i=+/-1 is a pseudo-spin denoting the low-spin (LS) and high-spin (HS) states of a transition metal molecular complex at site i.
The ``external field" is one half of the Gibbs free energy difference between the LS and HS states. The physical origin of the J interaction is ``believed to be'' elastic, not magnetic interactions. A short and helpful review of the literature is by Pavlik and Boca.

Important questions are:

1. What is a realistic model that can explain how J arises due to elastic interactions?
2. How does one calculate J from quantum chemistry calculations?
3. How does one estimate J for a specific material from experimental data?
4. What are typical values of J?

I will focus on the last two questions.
One can do a mean-field treatment of the Ising model, leading to a model free energy for the whole system that has the same form as that of an ideal binary mixture of two fluids where x = (1 + )/2, is the relative fraction of low spins. 
This model free energy was proposed in 1972 by Slichter and Drickmamer.
The free energy of interaction between the two "fluids" is of the form -Gamma x^2.
Gamma is often referred to as the ``co-operativity" parameter.
Minimising the free energy versus x gives a self-consistent equation for x(T).
This can be compared to experimental data for x vs T, e.g. from the magnetic susceptibility, and a Gamma value extracted for a specific material.

Values for Gamma obtained in this way for a wide-range of quasi-one-dimensional materials [with covalent bonding (i.e. strong elastic interactions) between spin centres] are given in Tables 1 and 2 of Roubeau et al. The values of Gamma are in the range 2-10 kJ/mol. In temperature units this corresponds to 240-1200 K.

My calculations [which may be wrong] give that Gamma = 4 J z, where z is the number of nearest neighbours in the Ising model. This means that (for a 1d chain with z=2) that J is in the range of 0.3-1.5 kJ/mol, or 30-150 K.

In many spin-crossover materials, the elastic interactions are via van der Waals, hydrogen bonding, or pi-stacking interactions. In that case, we would expect smaller values of J.
This is consistent with the following.
An analysis of a family of alloys by Jakobi et al. leads to a value of Gamma of 2 kJ/mol.
[See equation 9b. Note B=Gamma=150 cm^-1.  Also in this paper x is actually denoted gamma and x denotes the fraction of Zn in the material.].

I thank members of the UQ SCO group for all they are teaching me and the questions they keep asking.

Tuesday, October 1, 2019

Marks of an excellent PhD thesis

As years go by the PhD thesis in science and engineering is less and less of a ``thesis'' and more just a box to tick. There was a time when the thesis was largely the work of the student and tackled one serious problem. Decades ago at the University of Chicago, students were meant to write a single author paper that was based on their thesis.
At some universities, including my own, students can now staple several papers together, write an introductory chapter, and submit that as a thesis. One obvious problem with that system is the question of how large was the contribution of the student multi-author papers, both in terms of the writing and doing the experiments or calculations.

Previously I have argued that A PhD is more than a thesis, a PhD should involve scholarship, and a thesis should suggest future directions and be self-critical. In some sense these posts were negative, focusing on what may be missing. Here I just want to highlight several positive things I recently saw in a thesis.

A coherent story
The thesis should be largely about one thing looked at from several angles. It should not be ``several random topics that my advisor got excited about in the past 3 years.''

Meticulous detail
This should cover existing literature. More importantly, there should be enough detail that the next student can use the thesis as a reference to learn all the background to take the topic further.

Significant contributions from the student
A colleague once said that a student is ready to submit the thesis when they know more about the thesis topic than their advisor.

The situation in the humanities is quite different. Students largely work on their own and write a thesis that they hope will eventually become a book.

I think the decline of the thesis reflects a significant shift in the values of the university as a result of neoliberalism. The purpose of PhDs is no longer the education of the student, but rather to have low-paid research assistants for faculty to produce papers in luxury journals that will attract research income and boost university rankings.

What do you think are the marks of an excellent PhD thesis?

Thursday, September 26, 2019

Symmetry is the origin of all interactions

In Phil Anderson's review of Lucifer's Legacy: The Meaning of Asymmetry by Frank Close, Anderson makes the following profound and cryptic comment.
In a book focusing, as this does, on symmetry, it seems misleading not to explain the fundamental principle that all interaction follows from symmetry: the gauge principle of London and Weyl, modelled on and foreshadowed by Einstein's derivation of gravity from general relativity (Einstein seems to be at the root of everything). The beautiful idea that every continuous symmetry implies a conservation law, and an accompanying interaction between the conserved charges, determines the structure of all of the interactions of physics. It is not appropriate to try to approach advanced topics such as electroweak unification and supersymmetry without this foundation block.
To see how this plays out in electrodynamics see here.

Tuesday, September 24, 2019

A pioneering condensed matter physicist

In terms of institutional structures, Condensed Matter Physics did not really exist until the 1970s. A landmark being when the Division of Solid State Physics of the American Physical Society changed its name. On the other hand, long before that people were clearly doing CMP! If we think of CMP as a unified approach to studying different states of matter that enterprise began in earnest during the twentieth century.

Kamerlingh Onnes (1853-1924) was a pioneer in low-temperature physics but is best known for the discovery of superconductivity in 1911. In many ways, Onnes embodied the beginning of an integrated and multi-faceted approach to CMP: development of experimental techniques, the interaction of theory and experiment, and addressing fundamental questions.

1. Onnes played the long game, spending years developing and improving experimental methods and techniques, whether glass blowing, sample purification, or building vacuum pumps. He realized that this approach required a large team of technicians, each with particular expertise and that teamwork was important. The motto of Onnes’ laboratory was Door meten tot weten (Through measurement to knowledge). Techniques were a means to a greater end.

2. In Leiden, Onnes sought out theoretical advice from his colleague Johannes van der Waals (1837-1923).  [Almost 10 years ago I gave a talk about van der Waals legacy].

3. Onnes’ experiments were driven by a desire to answer fundamental questions. Questions he helped answer included the following.
Can any gas become liquid?
For gases is there a universal relationship between their density, pressure, and temperature?
How are gas-liquid transitions related to interactions between the constituent molecules in a material? At very low temperatures is the electrical conductivity of a pure metal zero, finite, or infinite?

The first of these questions motivated Onnes to pursue being the first to cool helium gas to low enough temperatures that it would become liquid. At the time all other known gases had been liquified. In 1908 his group observed that helium became liquid at a temperature of 4.2 K. This discovery was of both fundamental importance and great practical significance. Liquid helium became extremely useful in experimental physics and chemistry as a means to cool materials and scientific instruments. Indeed liquid helium enabled the discovery of superconductivity, which resulted from addressing the last question.


The figure shows Onnes (left) in his lab with van der Waals.

The discussion above closely follows Steve Blundell's Superconductivity: A Very Short Introduction.

Friday, September 20, 2019

Common examples of symmetry breaking

In his beautiful book, Lucifer's Legacy: The Meaning of Asymmetry, Frank Close gives several nice examples of symmetry breaking that make the concept more accessible to a popular audience.

One is shown in the video below. Consider a spherical drop of liquid that hits the flat surface of a liquid. Prior to impact, the system has continuous rotational symmetry about an axis normal to the plane of the liquid and through the centre of the drop. However, after impact, a structure emerges which does not have this continuous rotational symmetry, but rather a discrete rotational symmetry.



Another example that Close gives is illustrated below. Which napkin should a diner take? One on their left or right? Before anyone makes a choice there is no chirality in the system. However, if one diner chooses left others will follow, symmetry is broken and a spontaneous order emerges.


Thursday, August 29, 2019

My tentative answers to some big questions about CMP

In my last post, I asked a number of questions about Condensed Matter Physics (CMP) that my son asked me. On reflection, my title ``basic questions" was a misnomer, because these are actually rather profound questions. Also, it should be acknowledged that the answers are quite personal and subjective. Here are my current answers.

1. What do you think is the coolest or most exciting thing that CMP has discovered? 

Superconductivity.

explained?

BCS theory of superconductivity.
Renormalisation group (RG) theory of critical exponents.

2. Scientific knowledge changes with time. Sometimes long-accepted ``facts''  and ``theories'' become overturned.  What ideas and results are you presenting that you are almost absolutely certain of? 

Phase diagrams of pure substances.
Crystallography.
Landau theory and symmetry breaking as a means to understand almost all phase transitions.
RG theory.
Bloch's theorem and band theory as a framework to understand the electronic properties of crystals.
Quantisation of vortices.
Quantum Hall effects.
Emergence.

What might be overturned?

I will be almost certain of everything I will write about in the Very Short Introduction. This is because it centers around concepts and theories that have been able to explain a very wide swathe of experiments on diverse materials and that have been independently reproduced by many different groups.
I am deliberately avoiding describing speculative theories and the following.
Ideas, results, and theories based on experiments that did not involve the actual material claimed, involved significant curve fitting, or large computer simulations.
Many things published in luxury journals during the last twenty years.

3. What are the most interesting historical anecdotes? 

These are so interesting and relevant to major discoveries that they are worth including in the VSI.
Graphene and sellotape.
Quasi-crystals.
Bardeen's conflict with Josephson.
Abrikosov leaving his vortex lattice theory in his desk drawer because Landau did not like it.

What are the most significant historical events? 

Discovery of x-ray crystallography
Discovery of superconductivity.
Landau's 1937 paper.
BCS paper.
Wilson and Fisher.

Who were the major players?

They are so important that they are worthy of a short bio in the text.
Onnes.
Landau.
Bardeen.
Anderson.
Wilson.

4. What are the sexy questions that CMP might answer in the foreseeable future?

Is room-temperature superconductivity possible?