There is a long history of this and it is worth considering the wise observations of Robert Cava, back in 1997, contained in a tutorial lecture.
It would have been useful indeed in the early days of the field [cuprate superconductors] to have set up a "commission" to set some minimum standard of data quality and reproducibility for reporting new superconductors. An almost countless number of "false alarms" have been reported in the past decade, some truly spectacular. Koichi Kitazawa from the University of Tokyo coined these reports "USOs", for Unidentified Superconducting Objects, in a clever cross-cultural double entendre likening them to UFOs (Unidentified Flying Objects, which certainly are their equivalent in many ways) and to "lies" in the Japanese translation of USO.
These have caused great excitement on occasion, but more often distress. It is important, however, to keep in mind what a report of superconductivity at 130K in a ceramic material two decades ago might have looked like to rational people if it came out of the blue sky with no precedent. That having been said, it is true that all the reports of superconductivity in new materials which were later confirmed to be true did conform to some minimum standard of reproducibility and data quality. I have tried to keep up with which of the reports have turned out to be true and which haven't.
There have been two common problems:
1. Experimental error- due, generally, to inexperienced investigators unfamiliar with measurement methods or what is required to show that a material is superconducting. This has become more rare as the field matures.[n.b. you really need to observe both zero resistivity and the Meissner effect].
2. "New" superconductors are claimed in chemical systems already known to have superconductors containing some subset of the components. This is common even now, and can be difficult for even experienced researchers to avoid. The previously known superconductor is present in small proportions, sometimes in lower Tc form due to impurities added by the experimentalist trying to make a new compound. In a particularly nasty variation on this, sometimes extra components not intentionally added are present - such as Al from crucibles or CO2 from exposure to air some time during the processing. I wish I had a dollar for every false report of superconductivity in a Nb containing oxide where the authors had unintentionally made NbN in small proportions.There is also an interesting article about the Schon scandal, where Paul Grant claims
During my research career in the field of superconducting materials, I have documented many cases of an 'unidentified superconducting object' (USO), only one of which originated from an industrial laboratory, eventually landing in Physical Review Letters. But USOs have had origins in many universities and government laboratories. Given my rather strong view of the intrinsic checks and balances inherent in industrial research, the misconduct that managed to escape notice at Bell Labs is even more singular.