Friday, February 12, 2010

Breakdown of the Born-Oppenheimer approximation

The Born-Oppenheimer approximation is the starting point for all quantum chemistry and crystal band structure calculations. It allows one to factorise the electron-nuclear quantum state. It can be justified because nuclei are much heavy than electrons. However, it breaks down near electronic degeneracies. A case that has attracted a lot of attention are conical intersections between two potential energy surfaces for different electronic states of molecules. Such intersections provide a rapid means for non-radiative decay of excited states.

Going beyond Born-Oppenheimer represents a major challenge. A nice recent review for molecules is by Worth and Cederbaum.
A few years ago in a Phys. Rev. A paper, Andrew Hines, Chris Dawson, Gerard Milburn and I considered two different Jahn-Teller model Hamiltonians and quantified the entanglement of the electronic and nuclear degrees of freedom. One of these models has a conical intersection.

No comments:

Post a Comment

Science job openings in sunny Brisbane, Australia

Bribie Island, just north of Brisbane. The University of Queensland has just advertised several jobs that may be of interest to readers of t...